Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691893

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Asunto(s)
Antibacterianos , Cumarinas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Humanos , Relación Dosis-Respuesta a Droga , Ratones , Tensoactivos/farmacología , Tensoactivos/química , Tensoactivos/síntesis química
2.
RSC Adv ; 14(20): 13944-13945, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38686303

RESUMEN

[This corrects the article DOI: 10.1039/D0RA05640E.].

3.
Front Microbiol ; 15: 1353849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550871

RESUMEN

Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-HvKP) strains combining virulence and multidrug resistance (MDR) features pose a great public health concern. The aim of this study is to explore the evolutionary characteristics of virulence in CR-HvKP by investigating the genetic features of resistance and virulence hybrid plasmids. Methods: The resistance and virulence phenotypes were determined by using antimicrobial susceptibility testing and the mouse bacteremia infection model, respectively. Plasmid profiles were investigated by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting, conjugation assay, and whole genome sequencing (WGS). Bioinformatics tools were used to uncover the genetic features of the resistance and virulence hybrid plasmids. Results: Two ST11-KL64 CRKP clinical isolates (KP18-3-8 and KP18-2079), which exhibited enhanced virulence compared with the classic CRKP, were detected positive for blaKPC-2 and rmpA2. The virulence level of the hypermucoviscous strain KP18-3-8 was higher than that of KP18-2079. S1-PFGE, Southern hybridization and WGS analysis identified two novel hybrid virulence plasmids in KP18-3-8 (pKP1838-KPC-vir, 228,158 bp) and KP18-2079 (pKP1838-KPC-vir, 182,326 bp), respectively. The IncHI1B/repB-type plasmid pKP1838-KPC-vir co-harboring blaKPC-2 and virulence genes (rmpA2, iucABCD and iutA) but lacking type IV secretion system could transfer into non-hypervirulent ST11 K. pneumoniae with the assistance of a helper plasmid in conjugation. The IncFII/IncR-type virulence plasmid pKP18-2079-vir may have been generated as a result of recombination between a typical pLVPK-like virulence plasmid and an MDR plasmid. Conclusion: Our studies further highlight co-evolution of the virulence and resistance plasmids in ST11-CRKP isolates. Close surveillance of such hybrid virulence plasmids in clinical K. pneumoniae should be performed.

4.
Eur J Med Chem ; 268: 116293, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447461

RESUMEN

Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 µg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 µg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/química , Cefalosporinas/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Monobactamas/farmacología , Pruebas de Sensibilidad Microbiana , Mamíferos
5.
J Med Chem ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491982

RESUMEN

The escalation of multidrug-resistant bacterial infections, especially infections caused by methicillin-resistant Staphylococcus aureus (MRSA), underscores the urgent need for novel antimicrobial drugs. Here, we synthesized a series of amphiphilic 2-phenyl-1H-phenanthro[9,10-d]imidazole-antimicrobial peptide (AMP) mimic conjugates (III1-30). Among them, compound III13 exhibited excellent antibacterial activity against G+ bacteria and clinical MRSA isolates (MIC = 0.5-2 µg/mL), high membrane selectivity, and low toxicity. Additionally, compared with traditional clinical antibiotics, III13 demonstrated rapid bactericidal efficacy and was less susceptible to causing bacterial resistance. Mechanistic studies revealed that III13 targets phosphatidylglycerol (PG) on bacterial membranes to disrupt membrane integrity, leading to an increase in intracellular ROS and leakage of proteins and DNA, ultimately causing bacterial cell death. Furthermore, III13 possessed good fluorescence properties with potential for further dynamic monitoring of the antimicrobial process. Notably, III13 showed better in vivo efficacy against MRSA compared to vancomycin, suggesting its potential as a promising candidate for anti-MRSA medication.

6.
Eur J Med Chem ; 268: 116274, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408389

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Here, a series of novel isoxanthohumol-amine conjugates were synthesized as antibacterials. After bioactivity evaluation, a compound E2 was obtained, which showed excellent antibacterial activity against S. aureus and clinical MRSA isolates (MICs = 0.25-1 µg/mL), superior to vancomycin, and with negligible hemolysis and good membrane selectivity. Additionally, E2 exhibited fast bacterial killing, less susceptible to resistance, relatively low cytotoxicity, and good plasma stability. Mechanism investigation revealed that E2 can disrupt bacterial membranes by specifically binding to phosphatidylglycerol on the bacterial membrane, thus causing elevated intracellular ROS and leakage of DNA and proteins, and ultimately killing bacteria. Noticeably, E2 displayed a good in vivo safety profile and better in vivo therapeutic efficacy than the same dose of vancomycin, allowing it to be a potential antibacterial to conquer MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Xantonas , Humanos , Vancomicina , Staphylococcus aureus , Aminas/uso terapéutico , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico
7.
Eur J Med Chem ; 267: 116215, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38354522

RESUMEN

With the widespread use of antibiotics, bacterial resistance has developed rapidly. To make matters worse, infections caused by persistent bacteria and biofilms often cannot be completely eliminated, which brings great difficulties to clinical medication. In this work, three series of quinolone pyridinium quaternary ammonium small molecules were designed and synthesized. Most of the compounds showed good antibacterial activity against Gram-positive bacteria (S. aureus and E. faecalis) and Gram-negative bacteria (E. coli and S. maltophilia). The activity of the para-pyridine quaternary ammonium salt was better than that of the meta-pyridine. 3f was the optimal compound with good stability in body fluids and was unlikely to induce bacterial resistance. The hemolysis rate of erythrocytes at 1280 µg/mL for 3f was only 5.1%. Encouragingly, 3f rapidly killed bacteria within 4 h at 4 × MIC concentration and was effective in killing persistent bacteria in biofilms. The antibacterial mechanism experiments showed that 3f could cause disorder of bacterial membrane potential, increase bacterial membrane permeability, dissolve and destroy the membrane. Incomplete bacterial membranes lead to leakage of bacterial genetic material, concomitant production of ROS, and bacterial death due to these multiple effects.


Asunto(s)
Compuestos de Amonio , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Ciprofloxacina , Staphylococcus aureus , Escherichia coli , Hemólisis , Bacterias , Piridinas , Pruebas de Sensibilidad Microbiana
8.
Adv Sci (Weinh) ; 11(2): e2304397, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933983

RESUMEN

Infections caused by Enterobacterales producing New Delhi Metallo-ß-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.


Asunto(s)
Antibacterianos , Carbapenémicos , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/uso terapéutico , Carbapenémicos/farmacología , Meropenem/farmacología , Escherichia coli , Liposomas , Especies Reactivas de Oxígeno , Pruebas de Sensibilidad Microbiana
9.
J Ethnopharmacol ; 321: 117488, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008277

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The emergence of antibiotic-resistant bacteria has rendered it more challenging to treat bacterial pneumonia. Traditional Chinese medicine (TCM) has superior efficacy in the treatment of pneumonia, and it has the unique advantage of antibacterial resistance against multi-drug resistant (MDR) bacteria, but the medication rule and pharmacological mechanism of its antibacterial activity are not clear. AIM OF THE STUDY: This study aims to reveal Chinese medication patterns in treating bacterial pneumonia to select bioactive constituents in core herbs, predict their pharmacological mechanisms and further explore their antibacterial ability against clinically isolated MDR Klebsiella pneumoniae (KP) and their antibacterial mechanisms. MATERIALS AND METHODS: The high-frequency medicinal herbs to treat lung diseases were first screened from Pharmacopoeia of the People's Republic of China (ChP.), and then bioactive compounds in core herbs and targets for compounds and disease were collected. Potential targets, signaling pathways, and drugs' core components were determined by constructing protein-protein interaction network, enrichment analysis and "component-target-pathway-disease" network were mapped by Cytoscape 3.8.2, and the potential therapeutic value of selected core components was verified by comparing the disease targets in the GEO database with the herbal component targets in the ITCM database. The clinically isolated KP were screened by drug sensitivity tests with meropenem (MEM), polymyxin E (PE), and tigecycline and biofilm-forming assay; broth microdilution, chessboard methods and biofilm morphology and permeability experiments were employed to determine the antibacterial, bactericidal and biofilm inhibition ability of selected bioactive constituents alone and in combination with antibiotics; The mechanism of bioactive components on quorum sensing (QS) genes LuxS and LuxR was predicted by molecular docking and tested by RT-PCR. RESULTS: The 13 core Chinese medicines were obtained by mining ChP., and 615 potential targets of core herbal medicine were screened, and the PI3K-Akt signaling pathway might play crucial roles in the therapeutic process. In-vitro experiments revealed that the selected core compounds, including forsythoside B, baicalin, baicalein, and forsythin, all have antibacterial activity, in which baicalein had the strongest ability and a synergistic effect in combination with MEM or PE. Their synergy exhibited a stronger effect on biofilms of MDR KP, inhibiting biofilm formation, disrupting formed biofilms, and removing the residual structures of dead bacteria. Baicalein was predicted to have stable binding capacity to LuxS and LuxR genes by molecular docking, and RT-PCR results verified that the combination of baicalein with MEM or PE was effective in inhibiting the expression of QS genes (LuxS and LuxR) and consequently suppressing biofilm formation. CONCLUSION: The core Chinese herbal medicine in the ChP. to treat lung diseases has a multi-component, multi-target, and multi-pathway synergy to improve bacterial pneumonia. Experimental studies have confirmed that the bioactive compound baicalein was able to combat MDR KP alone and synergistic with MEM or PE, inhibited and disrupted biofilms via regulating LuxS and LuxR genes, and further disturbed quorum sensing system to promote the therapeutic efficacy, which provides a new pathway and rationale for treating MDR KP-induced bacterial pneumonia.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades Pulmonares , Neumonía Bacteriana , Humanos , Klebsiella pneumoniae , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Meropenem/farmacología , Transactivadores , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
10.
J Med Chem ; 66(19): 13746-13767, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37791640

RESUMEN

Metallo-ß-lactamases (MBLs) are zinc-dependent enzymes capable of hydrolyzing all bicyclic ß-lactam antibiotics, posing a great threat to public health. However, there are currently no clinically approved MBL inhibitors. Despite variations in their active sites, MBLs share a common catalytic mechanism with carbapenems, forming similar reaction species and hydrolysates. We here report the development of 2-aminothiazole-4-carboxylic acids (AtCs) as broad-spectrum MBL inhibitors by mimicking the anchor pharmacophore features of carbapenem hydrolysate binding. Several AtCs manifested potent activity against B1, B2, and B3 MBLs. Crystallographic analyses revealed a common binding mode of AtCs with B1, B2, and B3 MBLs, resembling binding observed in the MBL-carbapenem product complexes. AtCs restored Meropenem activity against MBL-producing isolates. In the murine sepsis model, AtCs exhibited favorable synergistic efficacy with Meropenem, along with acceptable pharmacokinetics and safety profiles. This work offers promising lead compounds and a structural basis for the development of potential drug candidates to combat MBL-mediated antimicrobial resistance.


Asunto(s)
Carbapenémicos , Inhibidores de beta-Lactamasas , Animales , Ratones , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , Carbapenémicos/farmacología , Meropenem/farmacología , Ácidos Carboxílicos , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química
11.
J Glob Antimicrob Resist ; 34: 229-233, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536658

RESUMEN

OBJECTIVES: Emergence of carbapenemase and tigecycline resistance genes in pathogens threatens the efficacy of last-resort antibiotics. High attention should be paid to the spread and convergence of such resistance genes. This study reports an extensively drug-resistant (XDR) Providencia rettgeri clinical strain co-harbouring carbapenemase genes blaNDM-1, blaOXA-10 and the tmexCD3-toprJ1b gene cluster. METHODS: The phenotype and genotype of P. rettgeri Pre20-95 were investigated by antimicrobial susceptibility testing, conjugation assay, stability testing and whole genome sequencing. Bioinformatics tools were used to uncover the genetic structures of its multidrug-resistant (MDR) plasmid pPre20-95-1 and SXT/R391 integrative and conjugative element ICEPreChn20-95. RESULTS: P. rettgeri strain Pre20-95 was isolated from a human clinical infection and displayed an extensively drug-resistant (XDR) phenotype. Whole genome sequencing (WGS) analysis identified a pPrY2001-like MDR plasmid, namely pPre20-95-1, co-harbouring blaNDM-1 and blaOXA-10 genes in Pre20-95. The multidrug resistance region of pPre20-95-1 was composed of a Tn6625-derived module and a ∆Tn1696 structure, and blaNDM-1 and blaOXA-10 were located in a composite Tn structure consisting of insertion sequences ISCR1 and ISAba125 and an In125-like class 1 integron, respectively. Furthermore, the novel RND efflux pump gene cluster tmexCD3-toprJ1b was identified on the SXT/R391 ICE ICEPreChn20-95 of its chromosome, and reverse PCR showed that it could form a circular intermediate for transmission. CONCLUSION: Our findings highlight further dissemination of the tmexCD3-toprJ1b gene cluster into a clinical isolate of P. rettgeri and convergence with multiple carbapenemase genes, which increases the risk of the emergence of XDR strains and threatens the treatment of Enterobacterales bacterial infections.


Asunto(s)
Infecciones por Enterobacteriaceae , Humanos , Infecciones por Enterobacteriaceae/microbiología
12.
J Med Chem ; 66(12): 7756-7771, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37192339

RESUMEN

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have become one of the biggest threats to public health. To develop new antibacterial agents against MRSA, a series of diamino acid compounds with aromatic nuclei linkers were designed and synthesized. Compound 8j, which exhibited low hemolytic toxicity and the best selectivity against S. aureus (SI > 2000), showed good activity against clinical MRSA isolates (MIC = 0.5-2 µg/mL). Compound 8j was able to quickly kill bacteria without inducing bacterial resistance. A mechanistic study and transcriptome analysis revealed that compound 8j can act on phosphatidylglycerol and induce the accumulation of endogenous reactive oxygen species, which can destroy bacterial membranes. Importantly, compound 8j achieved a 2.75 log reduction of MRSA count at 10 mg/kg/d in a mouse subcutaneous infection model. These findings suggested that compound 8j had the potential to be an antibacterial agent against MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Staphylococcus aureus , Péptidos Antimicrobianos , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Bacterias
13.
Biomed Pharmacother ; 161: 114438, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37002569

RESUMEN

Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.


Asunto(s)
Histona Desacetilasas , Ubiquitina , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/metabolismo , Unión Proteica
14.
Microbiol Spectr ; 11(1): e0261622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625668

RESUMEN

Generation of hybrid MDR plasmids accelerated the evolution and transmission of resistance genes. In this study, we characterized a blaKPC-2- and blaIMP-4-coharboring conjugative hybrid plasmid constituted of an IncHI5 plasmid-like region, an IncFII(Yp)/IncFIA plasmid-like region, and a KPN1344 chromosome-like region from a clinical ST852-KL18 Klebsiella quasipneumoniae strain. The blaIMP-4 gene was captured by a novel integron In1965, and the blaKPC-2 gene was located on a new non-Tn4401 group I NTEKPC element. Both blaKPC-2- and blaIMP-4-containing genetic architectures were distinguished from classical structures, highlighting the constant evolution of these genetic elements. IMPORTANCE The emergence of carbapenem-resistant Enterobacterales (CRE) that coexpress serine- and metallo-carbapenemases is a severe threat to the efficacy of ceftazidime-avibactam (CZA), which has been proven to be extremely effective against KPC-producing Enterobacterales strains. Our study described the cooccurrence of KPC-2, a serine ß-lactamase, and IMP-4, a metallo-ß-lactamase (MBL), on a conjugative hybrid plasmid from a clinical carbapenem-resistant K. quasipneumoniae strain, and it revealed an alternative route for IncHI5 plasmid to evolve by recombining with other plasmids to form a hybrid plasmid. Moreover, this hybrid plasmid can be transferred into other Klebsiella species and stably persist during passage. The propagation of two important carbapenemase genes with a new genetic background using well-evolved plasmids in the clinical setting promotes the emergence of superbugs that require careful monitoring.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella/genética , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Plásmidos/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
15.
Eur J Med Chem ; 247: 115029, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549113

RESUMEN

The development of bacterial resistance to the majority of clinically significant antimicrobials has made it more difficult to treat bacterial infections with conventional antibiotics. As part of ongoing research on antimicrobial peptide mimetics, a series of quaternary ammonium cationic compounds with various linkers were designed and synthesized, with some demonstrating high antibacterial activity against Gram-negative and Gram-positive bacteria. The structure-activity relationship study revealed that the spatial position of substituents had a significant impact on antibacterial activity and hemolytic toxicity. The best compound, 3e, has good antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC = 1 µg/mL)] and the least hemolytic toxicity [hemolytic concentration (HC50 = 905 µg/mL)], is stable in mammalian body fluids, and rarely induces bacterial resistance. The mechanism study revealed that the membrane action mode may be its potential bactericidal mechanism, and it can effectively cause the accumulation of intracellular reactive oxygen species (ROS) for killing bacteria. Importantly, 3e can effectively reduce the load of methicillin-resistant Staphylococcus aureus (MRSA) in mouse skin and has a higher in vivo bactericidal efficiency than vancomycin. These findings highlight the significance of divergent linkers in quaternary ammonium cations as antimicrobial peptide mimics and the potential of these cations to treat bacterial infections.


Asunto(s)
Compuestos de Amonio , Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Péptidos Antimicrobianos , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Cationes/farmacología , Compuestos de Amonio/farmacología , Mamíferos
16.
J Med Chem ; 66(1): 962-975, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36584344

RESUMEN

Infections caused by multidrug-resistant (MDR) bacteria are increasing worldwide, and with limited clinically available antibiotics, it is urgent to develop new antimicrobials to combat these MDR bacteria. Here, a class of novel amphiphilic xanthohumol derivatives were prepared using a building-block approach. Bioactivity assays showed that the molecule IV15 not only exhibited a remarkable antibacterial effect against clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates (MICs: 1-2 µg/mL) but also had the advantages of rapid bactericidal properties, low toxicity, good plasma stability, and not readily inducing bacterial resistance. Mechanistic studies indicated that IV15 has good membrane-targeting ability and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thus disrupting the bacterial cell membranes and causing increased intracellular reactive oxygen species and leakage of proteins and DNA, eventually resulting in bacterial death. Notably, IV15 exhibited remarkable in vivo anti-MRSA efficacy, superior to vancomycin, making it a potential candidate to combat MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Vancomicina/farmacología , Flavonoides/farmacología , Pruebas de Sensibilidad Microbiana
17.
Eur J Med Chem ; 244: 114885, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334451

RESUMEN

Bacterial resistance is a growing threat to public health and a significant barrier to anti-infective treatment. Consequently, the development of novel antibacterial strategies to address this issue is critical. Herein, we developed a series of chalcone-alkyl-lysine compounds by mimicking the chemical structure and antibacterial properties of cationic antimicrobial peptides. Most of the compounds showed significant antibacterial activity against Gram-positive and Gram-negative bacteria. Compound 6d displayed potent antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), with MICs of 1-4 µg/mL. In addition, 6d exhibited excellent antibacterial activity against clinical MRSA and NDM-positive isolates, bactericidal properties, low resistance frequency. The mechanism studies revealed that compound 6d destroys bacterial cell membranes by interacting with phosphatidylglycerol (PG), causing the production of reactive oxygen species (ROS) and the leakage of nucleic acids, resulting in bacterial death. Furthermore, compound 6d did not exhibit any observable toxicity in HeLa and HEK293 cells at 8 × MIC. As a result, the findings suggest that compound 6d has potential therapeutic effects against bacterial infections and could be a promising drug candidate for future research.


Asunto(s)
Chalcona , Chalconas , Humanos , Antibacterianos/química , Bacterias Grampositivas , Bacterias Gramnegativas , Lisina/farmacología , Chalconas/farmacología , Chalcona/farmacología , Células HEK293 , Pruebas de Sensibilidad Microbiana , Escherichia coli , Péptidos Catiónicos Antimicrobianos/farmacología
18.
Front Microbiol ; 13: 950087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090088

RESUMEN

Colistin is considered as an antibiotic of 'last resort' for the treatment of lethal infections caused by carbapenem-resistant Enterobacterales (CRE), dissemination of plasmid-borne colistin resistance gene mcr-1, particularly into CRE, resulting in the emergence of strains that approach pan-resistance. A wide variety of plasmid types have been reported for carrying mcr-1. Among which, large IncHI2-type plasmids were multidrug-resistant (MDR) plasmids harbored multiple resistance determinants in addition to mcr-1. Herein, we characterized a novel hybrid IncHI2-like mcr-1-bearing plasmid in an NDM-7-producing ST167 Escherichia coli strain EC15-50 of clinical origin. Antimicrobial susceptibility testing showed E. coli EC15-50 exhibited an extensively drug-resistant (XDR) profile that only susceptible to amikacin and tigecycline. S1-PFGE, Southern hybridization and Whole-genome Sequencing (WGS) analysis identified a 46,161 bp bla NDM-7-harboring IncX3 plasmid pEC50-NDM7 and a 350,179 bp mcr-1-bearing IncHI2/HI2A/N/FII/FIA plasmid pEC15-MCR-50 in E. coli EC15-50. Sequence detail analysis revealed the type IV coupling protein (T4CP) gene was absent on pEC15-MCR-50, explaining that pEC15-MCR-50 was a non-conjugative plasmid. Comparative genetic analysis indicated the hybrid plasmid pEC15-MCR-50 was probably originated from pXGE1mcr-like IncHI2/HI2A/N plasmid and pSJ_94-like IncFII/FIA plasmid, and generated as a result of a replicative transposition process mediated by IS26. Currently, the prevalent mcr-1-carrying IncHI2 plasmids were rarely reported to be fused with other plasmids. The identification of the novel hybrid plasmid pEC15-MCR-50 in this study highlighted the importance of close surveillance for the emergence and dissemination of such fusion MDR plasmids, particularly in NDM-producing Enterobacterales.

19.
Front Immunol ; 13: 899992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844505

RESUMEN

Pathogenic bacterial infections are the second highest cause of death worldwide and bring severe challenges to public healthcare. Antibiotic resistance makes it urgent to explore new antibacterial therapy. As an essential metal element in both humans and bacteria, zinc ions have various physiological and biochemical functions. They can stabilize the folded conformation of metalloproteins and participate in critical biochemical reactions, including DNA replication, transcription, translation, and signal transduction. Therefore, zinc deficiency would impair bacterial activity and inhibit the growth of bacteria. Interestingly, excess zinc ions also could cause oxidative stress to damage DNA, proteins, and lipids by inhibiting the function of respiratory enzymes to promote the formation of free radicals. Such dual characteristics endow zinc ions with unparalleled advantages in the direction of antibacterial therapy. Based on the fascinating features of zinc ions, nanomaterial-based zinc ion interference therapy emerges relying on the outstanding benefits of nanomaterials. Zinc ion interference therapy is divided into two classes: zinc overloading and zinc deprivation. In this review, we summarized the recent innovative zinc ion interference strategy for the treatment of bacterial infections and focused on analyzing the antibacterial mechanism of zinc overloading and zinc deprivation. Finally, we discuss the current limitations of zinc ion interference antibacterial therapy and put forward problems of clinical translation for zinc ion interference antibacterial therapy.


Asunto(s)
Infecciones Bacterianas , Nanoestructuras , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Iones , Nanoestructuras/uso terapéutico , Zinc/metabolismo , Zinc/uso terapéutico
20.
Front Microbiol ; 13: 778659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401428

RESUMEN

Advancement of novel sequencing technologies facilitates modern life science and medicine unprecedentedly. Exploring complete genome sequences of bacteria by long-read sequencing technology is significant for microbial genomics research. However, third-generation long-read sequencing technologies are available with limited choices, which generate technological barrier to scientific research. Recently, a novel QitanTech nanopore long-read sequencing technology has emerged in China, but the potential application and performance were unexplored. Herein, we comprehensively evaluated the feasibility of the emerging sequencing technology in assembling complete genomes of MDR pathogens. The results showed that 500 Mbp QitanTech nanopore sequencing data could be generated within 8 h in one flow cell with the standard library preparation method. The mean read length, longest read length, and mean read-level accuracy of QitanTech sequencing data were 6,041 bp, 57,037 bp, and 81.50% (LAST)/81.40% (Minimap2), respectively. Two routine assembly strategies including long-read assembly and hybrid assembly enable the achievement of complete bacterial genomes. The accuracy of assembled draft bacterial genomes with QitanTech long-read data could be improved up to 99.9% dramatically by polishing using accurate short-read data. Furthermore, the assembled bacterial genomes cover accurate structures of complex resistance plasmids harboring critical resistance genes such as tet(X), tmexCD-toprJ, and bla VIM-2, even the complex fusion MDR plasmid generated from homologous recombination. In conclusion, QitanTech nanopore sequencing, as a nanopore long-read sequencing technology launched in China, could be a good option for investigation of complex bacterial genomes. More potential applications based on this novel platform warrant investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...